Числовые выражения

Одним из понятий алгебры 7 класса являются числовые выражения. Они используются для решения задач. Что собой представляют числовые выражения и как их использовать?

Определение понятия

Какое выражение является числовым в алгебре? Так обозначают запись, составленную из цифр, скобок и знаков вычитания, умножения, деления, сложения.

Понятие числового выражения допустимо только в том случае, если запись несет смысловую нагрузку. К примеру, запись 4-) не является числовым выражением, так как она бессмысленна.

Примеры числовых выражений:

  • 25х13;
  • 32-4+8;
  • 12х(25-5).

Характеристики понятия

Числовое выражение имеет несколько свойств, которые используются в решении примеров и задач. Рассмотрим эти свойства подробнее. Для этого возьмем такой пример – 45+21-(6х2).

Значение

Так как числовое выражение содержит знаки различных арифметических действий, их можно выполнить и получить в результате какое-то число. Оно называется значением числового выражения. Как производится вычисление значений числового выражения? Оно соответствует правилам выполнения арифметических действий:

  • в выражениях без скобок выполняют действия, начиная с высших ступеней – умножение, деление, сложение, вычитание;
  • если имеется несколько одинаковых действий, их выполняют слева направо;
  • если есть скобки, сначала выполняют действия в них;
  • при вычислении дробей сначала выполняют действия в числителе и знаменателе, а затем числитель делят на знаменатель.

Применим эти правила к нашему примеру.

  • Сначала найдем значение в скобках: 6х2=12.
  • Затем произведем сложение: 45+21=66.
  • Последним действием найдем разность: 66-12=54.

Итак, число 54 будет являться значением выражения 45+21-(6х2).

Для того, чтобы правильно прочитать числовое выражение нужно определить, какое действие будет являться последним в подсчетах. В выражении 45+21-(6х2) последним действием было вычитание. Соответственно, называть это выражение нужно “разность”. Если бы вместо знака “-” стоял знак “+”, выражение называли бы суммой.

Если у выражения невозможно произвести подсчет значения, его называют не имеющим смысла. Например, смысла не имеет такое выражение: 12:(4-4). В скобках разность равна нулю. А по правилам математики на нуль делить нельзя. Значит, найти значение выражения невозможно.

Равенство

Так называют запись, в которой два числовых выражения разделены знаком “=”. Например, 45+21-(6х2)=66-12. Обе части записи равны числу 54, а значит, они равны друг другу. Такое равенство называют верным.

Если же написать 45+21-(6х2)=35+12, это равенство будет неверным. В левой части равенства значение выражения равно 54, а в правой – 57. эти числа не равны друг другу, значит, и равенство неверное.

Пример задачи

Для того, чтобы лучше понять тему, рассмотрим пример решения задачи. Как решить задачу числовым выражением?

Дано: две машины выезжают из одного пункта в другой. Они поедут по разным дорогам. Одной машине предстоит проехать 35 км., а другой – 42 км. Первая машина едет со скоростью 70 км/ч, а вторая – 84 км/ч Окажутся ли они в конечном пункте в одно и то же время?

Решение: нужно составить два числовых выражения, чтобы найти время в пути у каждой машины. Если они окажутся одинаковыми, значит, машины придут в конечный пункт одновременно. Для того, чтобы найти время, нужно расстояние разделить на скорость. 35 км:70 км/ч=0,5 ч. 42 км:84 км/ч=0,5 ч.

Итак, обе машины приехали в конечный пункт через полчаса.

Что мы узнали?

Из темы по алгебре, изучаемой в 7 классе, мы узнали, что числовое выражение – это запись из цифр и знаков арифметических действий. С помощью числовых выражений можно решать задачи. Если последним действием в числовом выражении было вычитание, то его называют “разность”. Если вместо знака “-” стоит знак “+”, выражение называется суммой.

Тест по теме

Предметы