Период колебаний пружинного маятника
Средняя оценка: 4.7
Всего получено оценок: 156.
Средняя оценка: 4.7
Всего получено оценок: 156.
Одной из простейших колебательных систем, удобных для изучения, является пружинный маятник. Рассмотрим его подробнее, получим формулу периода колебаний.
Пружинный маятник
Идеальный пружинный маятник представляет собой некоторую точечную массу $m$, которая закреплена на одном конце пружины с постоянной жесткостью $k$, а другой конец пружины – закреплен к неподвижной опоре. Больше никакие силы на пружинный маятник не действуют, и он способен к совершению свободных незатухающих колебаний.
Уравнение движения пружинного маятника
Пусть начало координат находится в точке покоя маятника. Тогда, если маятник выведен из состояния равновесия на расстояние $x$, со стороны пружины на него начинает действовать сила $F=-kx$.
Согласно второму закону Ньютона, если на тело действует сила, то оно приобретает ускорение:
$$a=-{kx\over m}$$
Скорость – это производная координаты. А ускорение – производная скорости. Следовательно, ускорение – это вторая производная координаты. Получим уравнение:
$$x”=-{k\over m}x$$
То есть, вторая производная координаты пропорциональна самой координате, взятой с противоположным знаком. Это дифференциальное уравнение, и в высшей математике доказывается, что единственная функция, являющаяся его решением – это круговая функця (синус или косинус).
$$x(t)=A cos \sqrt{k\over m}t$$
Если взять вторую производную этой функции, то можно убедиться, что она равна самой себе, с противоположным знаком и необходимым коэффициентом.
Период колебаний маятника
Сравним полученное уравнение с уравнением гармонических колебаний:
$$x(t)=A cos( \omega t+\varphi)$$
Можно видеть, что фаза $\varphi$ в уравнении координаты движения маятника равна нулю, а коэффициент $\sqrt {k\over m}$ представляет собой круговую частоту. Учитывая формулу, связывающей круговую частоту и период, получим формулу периода колебаний пружинного маятника:
$$T={2\pi \over \omega}=2\pi\sqrt {m\over k}$$
Действительно, чем больше масса пружинного маятника, тем дольше будут совершаться колебания. А чем больше жесткость пружины, тем период колебаний будет меньше. Но величины эти связаны с периодом не прямо, а через коренную зависимость, то есть, для увеличения периода маятника вдвое, надо либо увеличить массу маятника вчетверо, либо во столько же раз уменьшить жесткость пружины.
В реальности на маятник всегда действует сила тяжести, кроме того, в нем происходят потери, связанные с трением и нагревом пружины. Поэтому, его колебания будут затухающими, а их период будет немного отличаться от расчетного. Наиболее близким к идеальному пружинному маятнику является механизм часового балансира.
Что мы узнали?
Пружинный маятник – это точечная масса, двигающая под воздействием пружины постоянной жесткости. Период колебаний пружинного маятника пропорционален корню из отношения его массы к жесткости пружины.
Тест по теме
- /5Вопрос 1 из 5
Пружинный маятник - это…
Чтобы попасть сюда - пройдите тест.