Переместительное свойство умножения

Переместительное свойство умножения очень похоже по своей сути на такое же свойство умножения. Тем не менее, часто ученики 5 класса, которые полностью овладели свойствами сложения, допускают ошибку в таких же по сложности законах умножения. Чтобы избежать этого разберемся подробнее в теме вопроса.

Что такое умножение?

Умножение это сокращенное сложение, базовые элементы которого принято знать наизусть. Под базовыми элементами понимается таблица умножения. Под упрощенным сложением имеется в виду то, что первый множитель показывает число, а второй сколько раз это число было сложено с самим собой.

В математике 3 ступени подобных упрощений. На первой стоит сложение, на второй умножение, а третьей возведение в степень. Возведение в степень это умножение числа на себя самого какое-то количество раз. Сколько раз нужно повторить умножение отражает показатель степени.

Закон или свойство?

Для того, чтобы не путаться, нужно разобраться, как правильно называть законы умножения. Законами или все же свойствами?

Проблема в том, что закон это непреложное правило, а свойство это некоторая особенность действия. И то, и другое верно для свойств умножения. Поэтому никакой разницы в названиях нет. Но принято говорить свойства сложения и законы умножения. Однако ошибкой не будет назвать свойства сложения законами сложения и наоборот.

Свойства умножения

  • Распределительное. Распределительное свойство применяется только относительно сложения. Распределительное свойство гласит: если число умножается на сумму, то можно каждое из слагаемых умножить на это число, а результаты сложить.
  • Сочетательное. Сочетательное свойство говорит о том, что при перемножении трех и более чисел, можно перемножить два первых числа, а результат использовать дальше в качестве множителя. То есть 3*4*5=12*5=60
  • Переместительное.
    Переместительное свойство гласит, от перемены мест множителей произведение не меняется.

Распределительное свойство может применяться и относительно вычитания или деления. С помощью этого свойства раскрывают скобки в примерах при необходимости.

Переместительное свойство

Правильное использование определения переместительного свойства умножения может увеличить скорость счета. К сожалению, специальных правил группировки нет. Нужно полагаться только на собственный опыт и логику. Рассмотрим небольшой пример, чтобы показать применение свойства на практике:

((15*25*7*3:125)-3):12 – в этом примере упростить можно только правильно сгруппировав произведение в скобках для ускорения деления. Для этого представим число 15 в виде произведения 3*5

((15*25*7*3:125)-3):12=((5*3*25*7*3:125)-3):12 теперь перемножим 5 и 25, выполним деление произведения на число. Для этого можно только один из множителей разделить на это число, а потом результат использовать, как один из множителей.

(((5*25)*3*7*3:125)-3):12=((125*3*7*3:125)-3):12=(3*3*7-3):12=(9*7-3):12=(63-3):12=60:12=5

Без переместительного свойства не удалось бы правильно сгруппировать множители, а значит пришлось бы считать пример полностью, что отняло бы большое количество времени.

Что мы узнали?

Мы поговорили о том, что такое умножение. Решили, что понятия свойств и законов умножения одинаковы. Выделили свойства умножения и рассмотрели примеры переместительного свойства умножения. Сказали об особенностях этого свойства и его практическом значении.

Тест по теме

Оценка статьи

Средняя оценка: 4.8. Всего получено оценок: 31.

Предметы