Свойство биссектрисы треугольника

Свойство биссектрисы треугольника
3.9

Средняя оценка: 3.9

Всего получено оценок: 103.

3.9

Средняя оценка: 3.9

Всего получено оценок: 103.

Биссектриса треугольника – это уникальный отрезок; он один из самых сложных по восприятию и пониманию. Легко понять и осознать, что такое высота, можно разобраться с определением и назначением медианы, но биссектрисы – это сложно. Просто потому, что основой для понимания биссектрисы служит понимание угла, а это не так легко усвоить, как величину отрезка.

Определения

Какие определения нам понадобятся в процессе работы? Во-первых, это определение биссектрисы.

Биссектриса – это луч, имеющий начало в вершине угла и делящий угол пополам.

Биссектриса треугольника – это отрезок биссектрисы, которой начинается в вершине треугольника и заканчивается на стороне, противолежащей этой вершине.

Вписанная окружность – это окружность, которая касается всех сторон треугольника. Треугольник в этом случае называется описанным.

Теперь обозначим основные свойства биссектрисы и приведем для них доказательства.

Первое, что нужно обозначить, это различие понятий биссектрисы и биссектрисы треугольника. Это похожие вещи, но свойства биссектрис углов треугольников не будут действовать на все биссектрисы. Это нужно запомнить.

Свойства биссектрисы треугольника

  • Биссектриса в треугольнике делит сторону на отрезки, пропорциональные прилежащим сторонам.

Проведем в треугольнике АВС биссектрису ВК. После этого проведем прямую СМ, параллельную этой биссектрисе так, что точка М будет являться точкой пересечения продолжения стороны АВ.

Тогда два параллельных отрезка ВК и МС отсекут от сторон угла ВАС пропорциональные отрезки. То есть: АВ:АК=ВМ:КС. Докажем, что ВМ=ВС. Для этого посмотрим на треугольник ВМС. Угол АВК равен углу ВМС, как соответственные углы параллельных прямых при секущей АМ. С другой стороны угол КВС равен углу ВСМ, как накрест лежащие при параллельных прямых и секущей ВС. Но при этом угол АВК равен углу КВС, так как ВК – это биссектриса. Запишем все в виде равенств для большего понимания.

$$АВК = ВМС$$

$$КВС = ВСМ$$

$АВК = КВС$, значит углы ВМС и МСВ равны, а треугольник МВС – равнобедренный. Тогда $ВМ=ВС$ и $АВ:АК=ВС:СК$. Что и требовалось доказать.

Рис. 1. Первое свойство
  • Биссектриса равноудалена от сторон угла, в котором она проведена.

Это свойство не биссектрисы треугольника, а любой биссектрисы, поэтому ее доказательство проще рассматривать на рисунке угла.

Нарисуем угол АВС и проведем в нем биссектрису ВМ. Расстояние от биссектрисы до стороны в любой точке это перпендикуляр. Поэтому выберем произвольную точку на биссектрисе. Назовем ее D и опустим перпендикуляр на сторону АВ в точку Р и на сторону ВС в точку N. Тогда мы получим два прямоугольных треугольника: DРВ и DNB, равные между собой по гипотенузе ВD, которая будет общей стороной треугольников, и острому углу, так как угол PBD равен углу DBN, так как ВМ – биссектриса. Значит, и стороны PD=DN – как соответственные элементы. Доказательство простое, но изящное. Знание этого свойство поможет в доказательстве следующей теоремы.

Рис. 2. Второе свойство
  • Биссектрисы треугольника пересекаются в одной точке, и эта точка служит центром вписанной окружности. Это доказывается очень просто, необходимо из точки пересечения опустить перпендикуляры к каждой стороне.
Рис. 3. Третье свойство
Заключение

Что мы узнали?

Мы узнали, что такое биссектриса треугольника и чем она отличается от обычной биссектрисы. Выделили три свойства биссектрисы треугольника, которые пригодятся при решении задач и доказательстве теорем.

Тест по теме

  1. /5
    Вопрос 1 из 5

    Что такое биссектриса?

Доска почёта
Доска почёта

Чтобы попасть сюда - пройдите тест.

    Пока никого нет. Будьте первым!

Оценка статьи

3.9

Средняя оценка: 3.9

Всего получено оценок: 103.


А какая ваша оценка?

закрыть