Сочетательное свойство сложения

Сочетательное свойство сложения
4.6

Средняя оценка: 4.6

Всего получено оценок: 118.

4.6

Средняя оценка: 4.6

Всего получено оценок: 118.

Свойства сложения – это первый шаг к ускорению счета. Ученик, владеющий всеми приемами быстрого сложения, имеет больше времени для сложных задач и проверки своего решения. Поэтому имеет смысл рассмотреть свойства сложения еще раз, чтобы правильно применять их на практике

Что такое сложение?

Для начала вспомним, что такое вообще сложение? Сложение это одна из первых операций, которые изучают в школе, а иногда даже в детском саду. Как правило, сложение объясняют на примере фруктов.

Если взять 3 груши и 2 яблока, сложить их в корзину, то груши это первое слагаемое, яблоки второе, а общее количество фруктов в корзине – сумма. Это определение нельзя назвать неправильным, но ученики растут, как растут и используемые числа. Сложно представить себе сложение сотен тысяч фруктов.

Поэтому в математике используют другое определение, которое гласит, что сложение это перемещение точки на числовой прямой в право.

Многие знания усложняются со временем. Так, если в начальной школе ученикам говорят, что отрицательный результат сложения это ошибка, то в 5 классе все уже знают, что такой ответ возможен. Так и с определением свойств сложения. Обычных фруктов просто не хватит для того, чтобы представить себе большие числа. Поэтому в старших классах уходят к теоретическим определениям.

Свойства сложения

Выделяют переместительное и сочетательное свойство. Переместительное свойство говорит нам о том, что от перемены мест слагаемых сумма не поменяется.

Сочетательное свойство утверждает, что в примерах, где два и более множителя, сложение может производиться в любом порядке. Главное в этом случае правильно сгруппировать слагаемые, чтобы ускорить вычисления, а не затруднить его еще сильнее. Самый простой вариант это смотреть на количество единиц в числе. В первую очередь нужно складывать те числа, сумма единиц в которых равняется 10, например 29 и 31 в сумме дадут 60.

После этого складывают целые десятки и только потом все остальное. Это наиболее простой и быстрый путь решение примеров на сложение.

На самом деле даже не каждый профессор сможет отличить применение сочетательного свойства от переместительного. Они крайне похожи, некоторые математики считают даже, что сочетательное свойство является продолжением переместительного. По той же причине учителя редко просят отличить применение в задаче одного свойства от другого. Нужно просто уметь пользоваться обоими.

Пример

Примеры сочетательного свойства сложения найти не трудно. Практически в каждом примере используется это свойство.

15*3+5-13-17-2-16-2 – для начала выполним умножение.

45+5-13-17-2-16-2 – теперь сгруппируем члены так, чтобы вычислить результат как можно быстрее. Для этого нужно вспомнить, что разность можно представить, как сумму отрицательных чисел. В нашем случае просто вынесем минус за знак скобок.

45+5-13-17-2-16-2=(45+5)-(13+17)-(2+2+16) – теперь выполним вычисления в скобках и найдем окончательный результат

45+5-13-17-2-16-2=(45+5)-(13+17)-(2+2+16)=50-30-0=0

Вот такой ответ получился у достаточно большого примера. Не стоит пугаться простых ответов вроде 0 или 1. Иногда составители примеров таким образом путают учеников.

Заключение

Что мы узнали?

Мы поговорили о сложении, выделили сочетательное и переместительное свойства сложения. Поговорили о различиях этих свойств, а также о правильном применении сочетательного свойства сложения. Решили небольшой пример, чтобы показать применение сочетательного свойства на практике.

Тест по теме

  1. /10
    Вопрос 1 из 10

    Перемещение числа по числовой прямой вправо называется…

Доска почёта
Доска почёта

Чтобы попасть сюда - пройдите тест.

  • Татьяна Семенова
    10/10

Оценка статьи

4.6

Средняя оценка: 4.6

Всего получено оценок: 118.


А какая ваша оценка?

закрыть