Сложение сил

Если на тело действует несколько сил, то для определения результата их действия необходимо учитывать их все. Это возможно с помощью правил сложения сил. Познакомимся с этими правилами поближе.

Равнодействующая сила

Ситуации, когда на тело действует только одна сила, в Природе сравнительно редки. Практически всегда на любое тело действует сила тяжести, а кроме того, присутствуют силы трения.

Поэтому встает задача определения результата совместного действия всех сил, действующих на тело. Сколько бы таких сил не было – тело либо останется в покое, либо начнет совершать движение. Причем, это всегда будет происходить так, как будто на тело действует только одна сила. Сколько бы сил не действовало на тело, всегда можно подобрать одну такую силу, результат действия которой будет равен действую всех сил, приложенных к телу.

Сила, которая производит то же действие, как и несколько других сил, называется равнодействующей.

Равнодействующая сила

Рис. 1. Равнодействующая сила.

Равнодействующая сила используется при решении задач. Заменив силы, действующие на тело, равнодействующей, дальше для определения результата считают, что на тело действует только она.

Правила сложения сил

Действие по нахождению равнодействующей нескольких сил называется сложением сил. Для сложения сил существует переместительный и сочетательный законы. Поэтому, если на тело действует более двух сил, сперва складывают две из них, потом к результату прибавляют третью, потом четвертую – и так до последней силы.

Само сложение пары сил отличается от простого арифметического сложения.

В первую очередь, надо убедиться, что силы приложены к одной точке. Силы, приложенные к разным точкам складывать нельзя.

Во-вторых, необходимо учесть, что сила – величина векторная, а значит, для сложения двух сил необходимо пользоваться не обычным арифметическим сложением, а сложением по векторным правилам. Для сложения сил необходимо найти их проекции на оси системы координат, сложить эти проекции, а потом по проекциям найти результирующую силу.

В простейшем случае, когда координатная ось одна – модули проекций равны модулям самих сил, и их знак совпадает с их направлением. В результате, равнодействующая сил, направленных в одну сторону, направлена в ту же сторону, а ее модуль равен сумме модулей сил. Если силы направлены в разные стороны, равнодействующая их будет направлена в сторону большей по модулю силы, а ее модуль будет равен разности модулей большей и меньшей силы.

Сложение сил, вдоль одной прямой

Рис. 2. Сложение сил, вдоль одной прямой.

Если координатных осей две или три – необходимо определять проекции на все оси, складывать или вычитать их, в зависимости от направления, а затем, по полученным суммам определять модуль и направление равнодействующей.

Для двух координатных осей при сложении сил нередко удобно использовать правила параллелограмма или треугольника – это приводит к нахождению равнодействующей быстрее.

Правила треугольника и параллелограмма для векторов

Рис. 3. Правила треугольника и параллелограмма для векторов.

Что мы узнали?

Сила, производящая такой же результат, как несколько других, называется равнодействующей. Для ее нахождения необходимо убедиться, что исходные силы приложены к одной точке, а потом сложить их по правилам сложения векторов.

Тест по теме

Оценка доклада

Средняя оценка: 4.9. Всего получено оценок: 6.

Предметы